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Abstract— This research study uses the MNIST dataset to 

investigate how Convolutional Neural Networks (CNN) 

might be used to recognize handwritten numbers. From 

collecting data to evaluating models, it covers it all. We feed 

the preprocessed MNIST dataset into a CNN. It contains 

60,000 training images and 10,000 test images. Using a range 

of hyperparameters, such as optimizers and learning rates, 

the proposed CNN model's layers such as convolutional, max 

pooling, and dense layers are fine-tuned. Additionally, the 

efficacy of batch normalization method is examined. This 

study measures the proposed model's performance on test 

and training data using loss and accuracy metrics to ensure 

the model can be generalized. This study also proves that 

CNN works for number recognition and lays the 

groundwork for improvements in more advanced 

architectures, data augmentation, transfer learning, and 

integration with real-time applications. 

Keywords— MNIST Dataset, Handwritten Digit Recognition, 

CNN 

I. INTRODUCTION 

   With the development of deep learning methods, 
computer vision has recently seen tremendous progress. 
CNN has become standard technology, especially for 
performing image recognition and classification tasks. One 
of computer vision's most basic and long-standing challenges 
is using convolutional neural networks to recognize 
handwritten numbers. [1] Training and testing a CNN model 
on the MNIST dataset is the focus here because of its status 
as a well-known benchmark in this field. One of the most 
important resources for machine learning is the MNIST 
dataset, which stands for the Modified National Institute of 
Standards and Technology dataset. Countless handwritten 
numerals, each represented by a grayscale image of 28x28 
pixels, make up this collection. A full foundation for training 
and assessing ML models is provided by this dataset, which 
comprises 60,000 training photos and 10,000 test images. 
The dataset's clarity and simplicity have made it a great place 
to test new algorithms and approaches for image processing 
and, more generally, digit recognition. [2] Because of their 
inherent flexibility and capacity to learn feature hierarchies 
from input images automatically and adaptively, CNN is 
well-suited for application in this setting. Deep CNN has 
changed the game regarding machines' understanding and 
interpreting visual input. These networks have numerous 
layers specifically built to identify various elements in 
images. Classification of the image into a particular category, 
here, a number from 0 to 9—occurs when deeper layers can 
detect more complicated elements, such as edges and curves, 
the basic features normally identified by the initial layers. [3] 

The same approach is applied in the context of this 
research to prepare the images from the MNIST dataset to 
provide as an input to the CNN model. As part of this 
preparation, the images are reshaped so that CNN can read 
them correctly, and the pixel values are normalized to a 
uniform range. [4] This phase is vital to ensure the model can 
learn from the best available input data. After data 
preparation, the following step is to create the CNN model. 
Layer kinds and numbers, activation function usage, and 
other architectural decisions are all part of this process. 
There is a distinct function for each CNN layer. For instance, 
to generate feature maps that emphasize image features, 
convolutional layers subject the input to a battery of filters. 
When these feature maps are pooled, their dimensionality is 
reduced, simplifying the computations needed and helping 
minimize overfitting. The output image's classification as a 
number between 0 and 9, is produced by fully linked layers. 
During training, the CNN is fed with the MNIST dataset's 
images, and its weights are adjusted iteratively to minimize 
the discrepancy between the predicted and actual numbers. 
Metrics such as accuracy and loss track the training process 
and provide insights into the model's learning performance. 
This study has examined the optimization methods with 
varying learning rates to identify the best combination. These 
algorithms include Stochastic Gradient Descent (SGD), 
Adam, and Adadelta. The training step is just the beginning 
of the evaluation process for the model's performance. Using 
the MNIST dataset's test set, which consists of unseen data. 
An essential component of any machine learning model, this 
step shows how well it generalizes, making it vital. We 
examine the test set's performance using the same accuracy 
and loss metrics used during training. [5] 

An existing research study produces an accurate model 
for handwritten digit identification and sheds light on how 
different configurations and methodologies work with CNN 
for digit recognition. [6] These discoveries include 
understanding the effects of different preprocessing 
approaches on the model's learning capacity, the impact of 
different architectures and hyperparameters on performance, 
and how additional techniques, such as batch normalization, 
can improve the model's capabilities even more. 

This research study proves that CNNs are the real deal 
regarding image identification. It shows that even a basic 
dataset like the MNIST can teach CNN a lot and get quite 
accurate results regarding digit recognition. In addition to 
significantly impacting computer vision, this project's 
techniques and results open the door to future studies and 
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applications that use convolutional neural networks CNN for 
various image processing and recognition jobs. 

A. Aims and Objectives 

The main objective of this study is to show that using the 
MNIST dataset as a testbed is successful for handwritten 
digit recognition. One of the goals is to create a CNN model 
that can correctly assign a number between zero and nine to 
each image. Optimal CNN performance requires careful 
dataset preparation, an efficient network design, and 
hyperparameter selection. The effect of various optimization 
algorithms and sophisticated approaches, such as batch 
normalization, on the model's performance should also be 
investigated and measured. In addition to improving digit 
classification accuracy, this study aims to learn what makes 
CNN good at image recognition, advanced computer vision, 
and machine learning. 

We have used CNN throughout this project. The CNN 
algorithm works very well with image-related tasks and 
helps achieve high accuracy and sustainable results. This is 
the reason why this project has used CNN algorithm. 

B. Research Questions 

• When using the MNIST dataset for handwritten 

digit identification, how do the number and type 

of layers in a CNN influence efficiency and 

accuracy? 

• How do various optimization methods and their 

learning rates affect CNN's ability to recognize 

handwritten numbers? Some examples of these 

algorithms are Adam, SGD, and Adadelta. 

• On the MNIST dataset, how can normalization and 

batch normalization, two preprocessing 

approaches, affect a CNN model's learning 

capacity and overall classification accuracy? 

C. Dataset’s Description 

Machine learning researchers and practitioners rely on 
the massive MNIST dataset, an abbreviation for "Modified 
National Institute of Standards and Technology," to train and 
evaluate their models. The total number of images is 70,000, 
with 60,000 serving as training examples and 10,000 as test 
examples. [7] Each grayscale bitmap image in the collection 
represents a single integer from 0 to 9, which has dimensions 
of 28x28 pixels. The images labeled with the correct digit 
provide a simple and unambiguous structure for supervised 
learning tasks. This dataset is widely used as a benchmark in 
computer vision, particularly for image identification and 
classification tasks, due to its size and notoriety for 
simplicity. 

Generally, the dataset is all about images. All images of the 
dataset contain different versions of numbers from 1 to 9. 
The size of the dataset is large, which helps to create the 
model with higher accuracy. 

D. Ethical Issues 

Although mostly technical, several ethical concerns about 
using CNN for digit recognition on the MNIST dataset are 
raised. Data privacy and permission concerns are paramount, 
particularly as the research moves beyond MNIST and into 
real-world data that could include personally identifiable 

information. It is of the utmost importance to always obtain 
clear consent before processing any new data and to adhere 
to data protection requirements. Potential bias in ML models 
is another area of concern from an ethical standpoint. Even 
though the MNIST dataset is simpler and less biased than 
others, the established methodology could be used on more 
complicated datasets in the future, possibly unintentionally 
increasing biases. [8] This calls for thoughtful deliberation 
and frequent evaluation to guarantee that the model's 
forecasts are objective and fair. 

The rest of the paper is divided into the following parts. 

• In section II, there is a detailed literature review, 

along with some important terminologies of CNN 

• In section III, the methodology used to complete 

this research project is discussed. 

• In section IV, analysis has been discussed along 

with their respective results. 

• In section V, there is a conclusion that concludes 

this research project. Future recommendations are 

also given in this section. 

II. LITERATURE REVIEW 

 An improved model for MNIST handwritten digit 
classification using deep CNN is introduced in this paper. 
Using hyperparameter optimization is crucial for the model 
to work. Three feature extraction layers, activation and 
convolution, and two classification layers, density, comprise 
the CNN architecture. Hyperparameters are adjusted to 
enhance performance, including learning rate, activation 
function, batch normalization, kernel sizes, and batch sizes. 
[9] The model's average classification accuracy was 99.4 
percent on the test dataset and 99.82% on the training 
dataset, which is rather impressive. The authors say you need 
to optimize your hyperparameters to get good results. They 
go over how batch size affects training results, drawing 
attention to the need to strike a compromise between 
memory efficiency and model convergence. Another 
important part is learning rate decay, which helps the model 
converge faster by gradually decreasing the learning rate 
during training. This method improves the model's stability 
and helps prevent local minima. Techniques such as dropout 
layers and early halting based on validation loss help deal 
with overfitting, a prevalent problem in deep learning. 
Experiments were carried out using 60,000 training and 
10,000 testing samples utilizing the MNIST dataset. The 
authors extensively researched the effects of various 
hyperparameters on the model's output. Compared to other 
top-tier models, the model demonstrates even more 
effectiveness by outperforming them in classification 
accuracy. A thorough investigation of the effects of 
hyperparameters in CNN models for handwritten digit 
recognition, which contributes to the area, is provided by this 
study. Impressive accuracy rates on the training and testing 
datasets demonstrate how well the model holds up and how it 
could be used in real-world situations. 

This paper [10] uses the MNIST dataset to examine how 
well three different ML algorithms, Support Vector 
Machines, Multilayer Perceptron, and CNN, recognize 
handwritten digits. The study's main objective is to find the 
best model for digit recognition tasks by comparing their 



performance in terms of execution time and accuracy. 
Starting with the fact that various people have varied writing 
styles, the authors admit that handwritten digit detection isn't 
an easy task. They stress the significance of precision in 
practical contexts, where mistakes can have far-reaching 
consequences, such as automated bank check processing. 
The publication describes each algorithm in detail in its 
methodology section, including the dataset, number of 
epochs, algorithm complexity, accuracy, and runtime. The 
MNIST dataset, which includes 70,000 photographs of 
handwritten digits, is utilized for this assessment. Each 
algorithm's implementation is described in detail in the 
paper. While support vector machines (SVMs) are known for 
their speed and simplicity, they aren't great at identifying 
complicated images. CNN and MLP, in contrast, can 
accomplish more sophisticated structures, leading to 
improved accuracy in number identification. While support 
vector machines (SVMs) perform best on training data, CNN 
beat all other models on the test dataset. A crucial component 
of machine learning models, CNN's better capacity to 
generalize from training data to unknown data is shown here. 
We then go over how long it takes for each model to run, 
comparing how quickly and efficiently SVM works with 
CNN and how computationally heavy it is. In terms of 
accuracy, CNN is the best model for handwritten digit 
recognition tasks, according to this research. Execution times 
will be longer because of this. Finding the optimal solution 
for a given job often requires balancing two competing 
priorities: accuracy and efficiency. Finding the right 
algorithm, one that strikes a balance between accuracy, 
execution time, and processing resources, depends on the 
unique needs of each job, according to the article. CNN is 
ideal for complicated prediction problems with image data. 

With an emphasis on the MNIST and EMNIST datasets, 
the article offers a thorough overview of developments in 
handwritten character recognition. New computer vision 
methods, particularly CNNs, rely heavily on the MNIST 
dataset, which the study recognizes as crucial for their 
validation. It traces the history of MNIST as a standard from 
its inception in 1998 to its current iteration in 2019. This 
study classifies methods for achieving high accuracy on the 
MNIST dataset according to whether they use convolutional 
neural networks, data augmentation, or preprocessing. [11] 
According to the research, the MNIST dataset is becoming 
less challenging as state-of-the-art methods have reached test 
error rates below 1%. In response, a more difficult 
benchmark known as the EMNIST dataset was introduced in 
2017 with a bigger sample size and handwritten letters. 
Using the EMNIST dataset, the article compares the results 
of several models, including CNN, capsule layers, and deep 
convolutional extreme learning machines. It emphasizes the 
substantial accuracy attained with these models, particularly 
when utilizing CNNs with sophisticated methods like 
capsule layers. The authors note that data augmentation 
approaches frequently improve models' performance on these 
datasets, especially when combined with CNN classifiers. 
They also point out that, with advancements in hardware, the 
sector is moving towards more complicated designs and has 
a greater ability to manage massive amounts of information. 
The research concludes that although MNIST and EMNIST 
accuracy rates are getting close to their maximum, solving 
more complicated computer vision problems may require 
new and improved CNNs and other techniques. 

The creation of a CNN model for the MNIST dataset-
based recognition of handwritten digits is the primary 
emphasis of this work. The model comprises a fully 
connected layer, two pooling layers, an input layer, two 
convolutional layers, and an output layer. Feature extraction 
relies on the 5x5 convolutional core of the convolutional 
layers, which, in turn, simplifies the computational process. 
[12] The 2x2 pooling layers help reduce image resolution. 
The fully linked layer is employed to decipher these 
characteristics and generate predictions. The paper's focus on 
training and the model's performance is crucial. Following 
rigorous training, the model successfully recognized 
handwritten numbers with an accuracy rate of 99.25% on the 
test set and a flawless accuracy rate of 100% on the training 
set. The impressive level of accuracy demonstrated by the 
model highlights its promising capabilities for real-world 
digit identification tasks. Additionally, the authors address 
the potential drawbacks of their methodology, namely when 
it comes to classifying digits that are either handwritten or 
downloaded from the internet. They imply that to enhance 
the model's capacity for generalization, future studies should 
look at training it using handwritten custom digital data. To 
make CNN models more applicable, continuously improving 
and adjusting them to different datasets is necessary. 

Finding digits written by hand using the MNIST database 
and various machine-learning models is the main topic of 
this paper. [13] The authors examine options such as Support 
Vector Machine (SVM), Decision Tree, Naïve Bayes, K-
Nearest Neighbor, and Random Forest to evaluate how well 
multiple algorithms perform in handwritten digit recognition. 
Improving the accuracy and consistency of number 
recognition is the main goal of the research. Testing how 
well and quickly these algorithms work is an important part 
of the study. For this purpose, the authors put their models to 
the test using the MNIST dataset, which includes 28,000 
images of handwritten numbers for training and 14,000 
photos for testing. According to the study, the SVM classifier 
performed best among the classifiers tested, with a success 
rate of 95.88%. Although the time it takes to compute the 
results varies, this finding demonstrates that SVM is 
effective at correctly classifying handwritten digits. Factors 
such as human handwriting variability and the necessity for 
reliable feature extraction techniques are discussed in the 
article as obstacles to handwritten digit recognition. The 
authors stress the need to tailor one's choice of machine 
learning algorithm to one's job, striking a balance between 
accuracy, runtime, and available computing resources. 

With an emphasis on using CNN and K-nearest 
neighbors (KNN) algorithms, the study offers a perceptive 
investigation into handwritten digit recognition. To build a 
strong structure that can accurately detect different types of 
handwritten numbers, the study uses the MNIST dataset to 
train and evaluate these models. An important aspect of the 
study is contrasting the two networks' capabilities in 
identifying handwritten numbers using CNN and KNN. The 
CNN model's deep learning framework stands out because it 
processes and identifies the numerical images well. The 
convolutional, pooling, and fully connected layers that make 
up this model are all essential for extracting features and 
categorizing digits. The capacity of the well-known and 
straightforward KNN method to categorize numbers 
according to the closeness of feature space data points is also 
tested. The author [14] highlights the difficulties of 



handwritten digit recognition, including the fact that 
handwriting styles can vary greatly and the requirement for 
models to generalize from previously encountered training 
data to new, unfamiliar data. The study shows that CNNs can 
handle the intricacy of handwritten digit images better than 
KNN despite KNN providing a simpler technique. This is 
due to CNN's deep learning capabilities. The paper goes even 
further into the nuts and bolts of implementing these models, 
covering topics like the complexities of training neural 
networks and the significance of preprocessing datasets. 
Although both CNN and k-nearest neighbors (KNNs) have 
their uses, the study finds that CNNs are often better at 
recognizing handwritten digits despite their higher 
computational complexity. 

The authors [15] offer a CNN-based method for 
improved handwritten digit recognition. By training and 
testing the MNIST dataset, the authors aim to improve 
accuracy while decreasing computational time. This study 
presents a CNN architecture enhanced with the DL4J (Deep 
Learning for Java) toolkit to improve the numerical 
recognition procedure. The research highlights the CNN 
design with several pooling, fully connected, and 
convolutional layers. This architecture is crucial for feature 
extraction and classification from images of handwritten 
digits. The model uses transformations like convolution and 
pooling to process input data efficiently, as seen in the 
implementation details. The research stands out for 
thoroughly testing the suggested CNN model to confirm its 
efficacy. The authors reported an impressive 99.21% 
accuracy rate in detecting handwritten digits, marking a 
notable advance over earlier proposed models. Optimal 
design for digit recognition is discussed in the research, 
which also investigates how changing the number of 
convolutional layers affects accuracy and error rates. The 
study highlights the need to balance precision with 
computing economy. Important for real-world applications, 
the authors provide an effective training and prediction 
procedure using the DL4J framework. The study says the 
model might be enhanced for more complicated recognition 
tasks, like letter recognition. 

This research uses the MNIST dataset to investigate the 
feasibility of training a CNN to recognize handwritten digits. 
Improving CNN’s accuracy and efficiency in digit 
identification tasks is the main emphasis of the work. [16] 
The study presents a novel CNN architecture for feature 
extraction and digit image classification, incorporating 
multiple convolutional, pooling, and fully connected layers. 
With a 99.21% success rate on the MNIST test dataset, the 
CNN model developed in this work is successful. This 
impressive precision hints at the model's resilience and 
possible use in real-world digit identification tasks. To 
achieve such a high level of accuracy, the model's training 
procedure is detailed in the paper, emphasizing the 
significance of layer setup and parameter optimization. In 
addition, the study delves into the difficulties of using the 
model on handwritten numbers obtained from different 
sources, like manual writing or online downloads. The 
authors propose that future studies use a wider variety of 
digital handwriting data in training to improve the model's 
generalization ability. By shedding light on how to create a 
CNN model that is both efficient and accurate, this study 
contributes significantly to the area of number recognition. 
An all-encompassing method for enhancing CNN-based 

number recognition systems is provided by integrating 
sophisticated layer designs and focusing on parameter 
optimization. 

Utilizing the MNIST dataset in particular, the article 
offers a thorough investigation into the application of CNN 
for recognizing handwritten digits. An adaptive framework 
for optical character recognition (OCR) models is being 
developed as part of this project to improve accuracy for 
specific datasets of numerical digits in English. A fresh 
bespoke dataset of handwritten digits was created by a single 
contributor, guaranteeing stylistic consistency; this is one of 
the study's main contributions. This dataset is used with the 
conventional MNIST dataset when training a CNN model. 
The article investigates how different amounts of bespoke 
data, with and without rotations, impact the model's 
performance. According to the research, custom data can 
greatly enhance OCR accuracy for personalized or localized 
handwritten text. The study also emphasizes the difficulties 
linked to data imbalance and scarcity in optical character 
recognition. According to the authors, one possible answer to 
these problems is to generate data using traditional ways. 
[17] Considering the limits of existing datasets, they contend 
that this method might be the gold standard for bespoke data 
augmentation. 

The research uses the MNIST dataset to investigate 
CNN-based handwriting digit recognition. Feature extraction 
and digit image categorization are two of the many important 
tasks performed by the novel CNN architecture it introduces. 
[18] The model demonstrates phenomenal success with a 
remarkable accuracy rate of 97.78% on the MNIST test 
dataset, highlighting its usefulness and promise for real-
world applications. Examining the steps used to train the 
model, the study finds that optimizing parameters and layer 
configuration is crucial for good results. The article also 
delves into the difficulties of deciphering handwritten 
numbers from several mediums, including manual writing 
and online downloads. The research recommends training the 
model with a wider variety of handwritten digital data to 
enhance its generalizability. The study advances digit 
recognition by suggesting an effective and precise CNN 
model. It provides a holistic strategy for improving digit 
recognition systems that rely on CNN by providing insights 
into sophisticated layer topologies and optimizing 
parameters. 

A. CNN 

CNN is fundamental to deep learning, particularly for 
processing and analyzing images. They are very good at 
visual identification, image categorization, and object 
detection because of their special architecture based on the 
human visual cortex. Central to CNN are layers, the purpose 
of which is to process input data, usually an image. Mid to 
the system is the convolutional layer, which generates feature 
maps by applying filters to input data. These filters 
automatically focus on important elements, such as edges or 
textures. The next layer is the pooling layer, which controls 
overfitting by lowering the network's computation and 
parameter counts and shrinking the representation's spatial 
size. Near the very end of a CNN design are the fully linked 
layers. This is where the abstract reasoning that relies on the 
traits that have been extracted happens. A fully connected 
layer integrates the learned characteristics for the final 



classification or prediction job by combining neurons in that 
layer to all activations in the previous layer. 

When it comes to computer vision, CNN has proven 
game-changers. Applications like medical image analysis, 
autonomous vehicle navigation, and face recognition benefit 
greatly from their capacity to learn hierarchical feature 
representations. CNN has always led deep learning research, 
and this trend will only accelerate as technology improves 
and CNN can process increasingly complicated tasks and 
data kinds. [19] 

B. SGD 

Machine learning and deep learning rely heavily on SGD, 
an essential optimization technique while training their 
models. SGD is a technique for reducing a training-set-
averaged objective function, usually a loss function. Instead 
of using the whole dataset to calculate the loss function's 
gradient, as is done by classic gradient descent methods, 
SGD adjusts the model's parameters using a small number of 
training samples. For big datasets, this method makes SGD 
far more efficient. [20] 

C. Adam Optimizer 

Regarding deep learning, the Adam optimizer is one of 
the most popular algorithms for training neural networks. Its 
ability to handle massive datasets and complex models 
results efficiently and powerfully from its successful usage 
of adaptive learning rates. Adam integrates the best features 
of the RMSProp and AdaGrad optimizers to deal with sparse 
gradients on noisy issues. For every parameter, Adam keeps 
track of two moving averages: one for the slopes (like 
momentum) and another for the square of the gradients (like 
RMSprop). Using these moving averages, we may determine 
a parameter-specific adaptive learning rate. First, the mean, 
which considers previous angles, aids momentum; second, 
the uncentered variance, which scales the learning rate 
inversely proportional to the size of the slopes, is very useful. 
Adam is resilient to scaling and updating differences because 
this technique dynamically adapts the learning rate for each 
parameter. [21] 

D. Adadelta Optimizer 

A popular machine learning technique for training neural 
networks, Adagrad has some limitations; the Adadelta 
optimization algorithm aims to fix these issues and make 
Adagrad even better. Although Adagrad performed well with 
sparse data, it frequently encountered problems during 
training, such as a quickly dropping learning rate, which 
resulted in less-than-ideal convergence. Adadelta, which 
provides a more stable method for adaptive learning rates, 
arose to address these concerns. Reduced aggressive 
monotonically declining learning rate is the main difference 
between Adagrad and Adadelta. Adadelta limits the window 
of accumulated past gradients to a specified size instead of 
adding all past squared angles. This is accomplished by 
utilizing exponentially moving averages, which ignore long-
gone gradients in favor of more current data. The learning 
rate can be kept from dropping to very low values with the 
help of this method. [22] 

One area where Adadelta has greatly appreciated is its 
use with recurrent neural networks (RNNs) and other deep 
learning applications. For complicated and large-scale ML 

jobs, it's a good option because it can dynamically change 
learning rates and consider the most relevant gradient 
information. Even if there are more recent optimization 
algorithms, Adadelta is still a useful tool for optimization, 
particularly for jobs where keeping and changing learning 
rates are tough. [23] 

III. METHODOLOGY 

     Data preparation is the project methodology's first and 

most important phase. The MNIST dataset, which is 28x28 

pixels and contains 60,000 training and 10,000 test images 

of grayscale handwritten digits, is the basis of this work. 

These images must first undergo several preprocessing 

stages for machine learning to work. To ensure the data is 

consistent, we normalize the image pixel values to all fall on 

a scale from 0 to 1. The images are also prepared for use 

with CNN by being transformed into a tensor format. This 

transformation is critical because CNN works best with data 

that follows a certain format. Building the CNN model 

follows data preparation. The project's deep learning method 

revolves around this model. The CNN architecture of this 

project is organized into numerous levels, with each layer 

performing a specific task. The convolutional layers are set 

up with different numbers of filters; they are responsible for 

extracting features from the input images. To help reduce 

computational complexity and overfitting, these layers are 

alternated with max-pooling layers, which reduce 

dimensionality. Important for the last categorization 

judgment, the network has thick layers towards the end. 

Activation functions such as ReLU (Rectified Linear Unit) 

contribute to the model's ability to learn complicated 

patterns by introducing non-linearity. 

Training the model follows the definition of the model's 

design. The next step is to feed CNN the training data that 

has been prepared. The training phase changes the network's 

weights to minimize the discrepancy between the actual and 

predicted values. To ensure the model is learning well, 

watching how it performs as it is being trained is crucial. 

Common performance measures used for this purpose 

include loss and accuracy. To find the optimal configuration 

for the model's performance, we experimented with several 

optimization techniques, such as Stochastic Gradient 

Descent (SGD), Adam, and Adadelta, each with its learning 

rate. 

A distinct test set is used to assess the model's performance 

in addition to the training set. This phase must ensure the 

model works properly with fresh, unknown data. The 

accuracy of the model's digit classification is tested at this 

stage. Some criteria for evaluating performance include loss 

and precision on the test set. It is possible to learn which 

optimizer configuration produces the most accurate and 

error-minimizing outcomes by comparing these metrics 

across several setups. Moreover, the study investigates the 

utilization of methods such as batch normalization in 

conjunction with various optimizers and learning rates. The 

training process can be made more stable and faster by 

applying batch normalization to every layer or activation 

input. The impact of introducing batch normalization is 

analyzed by examining the changes in accuracy and loss on 

the testing data. 
Results analysis and interpretation are also critical parts of 
the approach. We must test the model's performance in 



various settings to do this. The accuracy and loss rates of the 
model's digit prediction capabilities under different 
optimizers and learning rates are evaluated. You may learn 
much about the efficacy of multiple hyperparameters and 
training approaches from these comparisons. Its performance 
on specific test photos is further examined to assess the 
model's usefulness in real-world settings. A thorough 
evaluation of the results is the last step of the project. This 
involves analyzing the model's performance in different 
environments and determining the impact of different 
hyperparameters and architectural decisions. Understanding 
the role of various preprocessing stages, such as 
normalization and tensor conversion, in the model's 
performance is also explored in the analysis. 

IV. DATA ANALYSIS 

Recognizing handwritten digits using a CNN applied to 
the MNIST dataset is the main emphasis of this research 
effort. The model was trained and tested using the MNIST 
dataset, a set of greyscale images of handwritten numbers. 
Each sample in the dataset is a 28x28 pixel image; there are 
60,000 training examples and 10,000 test samples in total. 
Before CNN can do its job, the images undergo several 
changes, such as being normalized and converted to tensor 
format. The model uses training and testing data sets to sort 
the images into ten categories, each representing a number 
from zero to nine. Digit recognition is a fundamental 
problem in computer vision, and this project uses deep 
learning techniques with this classic dataset to tackle it. 

 

Figure 1: Class Distribution 

Figure 1 shows the distribution of classes within that 

dataset. The dataset is reasonably balanced, with each 

category representing 0 to 9. The dataset has a nearly 

uniform representation of each digit class since the counts 

for each type are approximately equal and hover around the 

6,000 level. The CNN model must train on an equivalent 

amount of data for each digit to improve the likelihood of 

reaching high accuracy across all classes during the 

recognition task. This uniformity facilitates this process. 

 
Figure 2: Pixel Intensity Mean and Standard Deviation 

The two graphs in Figure 2 show pixel intensity statistics in 

the images from the MNIST dataset. The periodic pattern 

seen in the left chart, which shows the mean of pixel 

intensities, is related to the structure of the handwritten 

numbers, as darker parts (such as edges) are consistently 

associated with certain image sections. The right chart 

shows high variability at the same periodic sites, illustrating 

the pixel intensity standard deviation. The method to 

generate the Figure 2 graphs can be seen in the coding file. 

 
Figure 3: Training and Testing Data Class Distribution 

Figure 3 shows that each of the ten classes in the training 

data has many samples (5,000 to 6,000 per class), but there 

is a little inequity in the distribution of these samples (see 

left side of the figure). There is a more consistent 

distribution in the test data class distribution (shown on the 

right), with about 800 to 1,000 samples for each digit class. 

 
Figure 4: Loading the Sample Images After Preprocessing 

Figure 4 shows that the images were converted to a four-

dimensional array, and the pixel values were uniformly 

scaled to a range of [0, 1]. 



 
Figure 5: Predicting the Digit with SGD Optimizer and 0.01 

Learning Rate 

Figure 5 shows that we are testing the image. Based on the 

image, we know that the right answer is 7, and our trained 

model also predicts this, so this is fine. Also, the accuracy of 

our model is 97.96%, and the testing loss is only 6.29%, 

which is a good result. 

 
Figure 6: Predicting the Digit with Adam Optimizer and 0.001 

Learning Rate 

Figure 6 shows another version of 7, and it has been tested 

with different hyperparameters. It can be illustrated from the 

above figure that the testing accuracy is 98.27%, and the 

loss is only 5.51%, which is surely a better result than the 

previous result. 

 
Figure 7: Predicting the Digit with Adadelta Optimizer and 1.0 

Learning Rate 

Just like above Figure 6, Figure 7 also shows that the 

hyperparameters have been changed, and just like above, the 

accuracy has improved, and the testing loss has decreased. 

The testing accuracy achieved is 98.65%, and testing loss 

has also been reduced to 3.97%. 

 

 

 
Figure 8: Complex CNN 

A sophisticated CNN model is built and trained using the 

Keras Sequential model in Figure 8. This CNN model 

consists of two dense layers, a flattening step, and two 

convolutional and max pooling layers. The filters increase 

from 32 in the first convolutional layer to 64 in each 

succeeding layer. The model utilizes the 'he_uniform' kernel 

initializer and the 'ReLU' activation function. Using a 

learning rate of 0.01, SGD is the utilized optimizer. The 

model gets good results after being trained on the training 

dataset (X_train, Y_train). The model's efficacy in image 

classification is demonstrated by its testing loss and 

accuracy on the test dataset (X_test, Y_test). Furthermore, 

the model's ability to accurately estimate the digit in a 

particular test image (index 150) demonstrates its usefulness 

in image identification tasks. The model's intricacy and 

capacity to handle comprehensive image data are 

highlighted by its 159,254 trainable parameters, as revealed 

in the model overview. Also, for this complex CNN, the 

achieved testing accuracy is 98.73%, and the testing loss is 

4.29%. 

 
Figure 9: Predicting the Digit with SGD Optimizer, 0.01 Learning 

Rate, and Batch Normalization 

Finally, in Figure 9, with batch normalization, the learning 

rate of 0.01, and SGD optimizer, the testing data accuracy 

was 99.24%, and the testing loss was only 2.63%. 

V. CONCLUSION 

Results from this experiment show that Convolutional 
Neural Networks (CNNs) performed well on the MNIST 
dataset when it came to identifying handwritten numbers. 
The importance of careful preprocessing and optimizing the 
model architecture in attaining high accuracy in digit 
classification is demonstrated throughout the project 
lifecycle, from data preparation to model creation, training, 
and performance evaluation. The dataset was normalized, 
and the tensor was transformed to extract and understand the 



complex patterns in handwritten numbers. Then, a CNN 
model was meticulously built using many convolutional, 
max pooling, and dense layers. Experiments using alternative 
learning rates of optimizers, such as SGD, Adam, and 
Adadelta, shed light on the learning dynamics of the model. 
Better accuracy and less loss are signs that the model's 
performance was already high before batch normalization 
was used. In the future, the use of deeper networks or CNNs 
with multiple layers can detect more complex patterns in the 
data that might be further investigated. 
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