

MNSIT Handwritten Digit Recognition

using CNN

Shafaque Ahmareen

Computer Science,

Emirates School Establishment

Fujairah, UAE

shafaqueahmareen@ieee.org

Alreem Khalid Khamies Alabdouli

Emirates School of Establishment

Fujariah, UAE

stuf2013027132@ese.gov.ae

 Sirisha Polturi

Faculty of Science and Technology

(Icfai Tech), Department of Computer

Science and Engineering,

(of Affiliation)

ICFAI Foundation for Higher

Education,

Hyderabad, India-501203

sirisha.polturi@ifheindia.org

Abstract— This research study uses the MNIST dataset to

investigate how Convolutional Neural Networks (CNN)

might be used to recognize handwritten numbers. From

collecting data to evaluating models, it covers it all. We feed

the preprocessed MNIST dataset into a CNN. It contains

60,000 training images and 10,000 test images. Using a range

of hyperparameters, such as optimizers and learning rates,

the proposed CNN model's layers such as convolutional, max

pooling, and dense layers are fine-tuned. Additionally, the

efficacy of batch normalization method is examined. This

study measures the proposed model's performance on test

and training data using loss and accuracy metrics to ensure

the model can be generalized. This study also proves that

CNN works for number recognition and lays the

groundwork for improvements in more advanced

architectures, data augmentation, transfer learning, and

integration with real-time applications.

Keywords— MNIST Dataset, Handwritten Digit Recognition,

CNN

I. INTRODUCTION

 With the development of deep learning methods,
computer vision has recently seen tremendous progress.
CNN has become standard technology, especially for
performing image recognition and classification tasks. One
of computer vision's most basic and long-standing challenges
is using convolutional neural networks to recognize
handwritten numbers. [1] Training and testing a CNN model
on the MNIST dataset is the focus here because of its status
as a well-known benchmark in this field. One of the most
important resources for machine learning is the MNIST
dataset, which stands for the Modified National Institute of
Standards and Technology dataset. Countless handwritten
numerals, each represented by a grayscale image of 28x28
pixels, make up this collection. A full foundation for training
and assessing ML models is provided by this dataset, which
comprises 60,000 training photos and 10,000 test images.
The dataset's clarity and simplicity have made it a great place
to test new algorithms and approaches for image processing
and, more generally, digit recognition. [2] Because of their
inherent flexibility and capacity to learn feature hierarchies
from input images automatically and adaptively, CNN is
well-suited for application in this setting. Deep CNN has
changed the game regarding machines' understanding and
interpreting visual input. These networks have numerous
layers specifically built to identify various elements in
images. Classification of the image into a particular category,
here, a number from 0 to 9—occurs when deeper layers can
detect more complicated elements, such as edges and curves,
the basic features normally identified by the initial layers. [3]

The same approach is applied in the context of this
research to prepare the images from the MNIST dataset to
provide as an input to the CNN model. As part of this
preparation, the images are reshaped so that CNN can read
them correctly, and the pixel values are normalized to a
uniform range. [4] This phase is vital to ensure the model can
learn from the best available input data. After data
preparation, the following step is to create the CNN model.
Layer kinds and numbers, activation function usage, and
other architectural decisions are all part of this process.
There is a distinct function for each CNN layer. For instance,
to generate feature maps that emphasize image features,
convolutional layers subject the input to a battery of filters.
When these feature maps are pooled, their dimensionality is
reduced, simplifying the computations needed and helping
minimize overfitting. The output image's classification as a
number between 0 and 9, is produced by fully linked layers.
During training, the CNN is fed with the MNIST dataset's
images, and its weights are adjusted iteratively to minimize
the discrepancy between the predicted and actual numbers.
Metrics such as accuracy and loss track the training process
and provide insights into the model's learning performance.
This study has examined the optimization methods with
varying learning rates to identify the best combination. These
algorithms include Stochastic Gradient Descent (SGD),
Adam, and Adadelta. The training step is just the beginning
of the evaluation process for the model's performance. Using
the MNIST dataset's test set, which consists of unseen data.
An essential component of any machine learning model, this
step shows how well it generalizes, making it vital. We
examine the test set's performance using the same accuracy
and loss metrics used during training. [5]

An existing research study produces an accurate model
for handwritten digit identification and sheds light on how
different configurations and methodologies work with CNN
for digit recognition. [6] These discoveries include
understanding the effects of different preprocessing
approaches on the model's learning capacity, the impact of
different architectures and hyperparameters on performance,
and how additional techniques, such as batch normalization,
can improve the model's capabilities even more.

This research study proves that CNNs are the real deal
regarding image identification. It shows that even a basic
dataset like the MNIST can teach CNN a lot and get quite
accurate results regarding digit recognition. In addition to
significantly impacting computer vision, this project's
techniques and results open the door to future studies and

mailto:shafaqueahmareen@ieee.org
mailto:stuf2013027132@ese.gov.ae
mailto:sirisha.polturi@ifheindia.org

applications that use convolutional neural networks CNN for
various image processing and recognition jobs.

A. Aims and Objectives

The main objective of this study is to show that using the
MNIST dataset as a testbed is successful for handwritten
digit recognition. One of the goals is to create a CNN model
that can correctly assign a number between zero and nine to
each image. Optimal CNN performance requires careful
dataset preparation, an efficient network design, and
hyperparameter selection. The effect of various optimization
algorithms and sophisticated approaches, such as batch
normalization, on the model's performance should also be
investigated and measured. In addition to improving digit
classification accuracy, this study aims to learn what makes
CNN good at image recognition, advanced computer vision,
and machine learning.

We have used CNN throughout this project. The CNN
algorithm works very well with image-related tasks and
helps achieve high accuracy and sustainable results. This is
the reason why this project has used CNN algorithm.

B. Research Questions

• When using the MNIST dataset for handwritten

digit identification, how do the number and type

of layers in a CNN influence efficiency and

accuracy?

• How do various optimization methods and their

learning rates affect CNN's ability to recognize

handwritten numbers? Some examples of these

algorithms are Adam, SGD, and Adadelta.

• On the MNIST dataset, how can normalization and

batch normalization, two preprocessing

approaches, affect a CNN model's learning

capacity and overall classification accuracy?

C. Dataset’s Description

Machine learning researchers and practitioners rely on
the massive MNIST dataset, an abbreviation for "Modified
National Institute of Standards and Technology," to train and
evaluate their models. The total number of images is 70,000,
with 60,000 serving as training examples and 10,000 as test
examples. [7] Each grayscale bitmap image in the collection
represents a single integer from 0 to 9, which has dimensions
of 28x28 pixels. The images labeled with the correct digit
provide a simple and unambiguous structure for supervised
learning tasks. This dataset is widely used as a benchmark in
computer vision, particularly for image identification and
classification tasks, due to its size and notoriety for
simplicity.

Generally, the dataset is all about images. All images of the
dataset contain different versions of numbers from 1 to 9.
The size of the dataset is large, which helps to create the
model with higher accuracy.

D. Ethical Issues

Although mostly technical, several ethical concerns about
using CNN for digit recognition on the MNIST dataset are
raised. Data privacy and permission concerns are paramount,
particularly as the research moves beyond MNIST and into
real-world data that could include personally identifiable

information. It is of the utmost importance to always obtain
clear consent before processing any new data and to adhere
to data protection requirements. Potential bias in ML models
is another area of concern from an ethical standpoint. Even
though the MNIST dataset is simpler and less biased than
others, the established methodology could be used on more
complicated datasets in the future, possibly unintentionally
increasing biases. [8] This calls for thoughtful deliberation
and frequent evaluation to guarantee that the model's
forecasts are objective and fair.

The rest of the paper is divided into the following parts.

• In section II, there is a detailed literature review,

along with some important terminologies of CNN

• In section III, the methodology used to complete

this research project is discussed.

• In section IV, analysis has been discussed along

with their respective results.

• In section V, there is a conclusion that concludes

this research project. Future recommendations are

also given in this section.

II. LITERATURE REVIEW

 An improved model for MNIST handwritten digit
classification using deep CNN is introduced in this paper.
Using hyperparameter optimization is crucial for the model
to work. Three feature extraction layers, activation and
convolution, and two classification layers, density, comprise
the CNN architecture. Hyperparameters are adjusted to
enhance performance, including learning rate, activation
function, batch normalization, kernel sizes, and batch sizes.
[9] The model's average classification accuracy was 99.4
percent on the test dataset and 99.82% on the training
dataset, which is rather impressive. The authors say you need
to optimize your hyperparameters to get good results. They
go over how batch size affects training results, drawing
attention to the need to strike a compromise between
memory efficiency and model convergence. Another
important part is learning rate decay, which helps the model
converge faster by gradually decreasing the learning rate
during training. This method improves the model's stability
and helps prevent local minima. Techniques such as dropout
layers and early halting based on validation loss help deal
with overfitting, a prevalent problem in deep learning.
Experiments were carried out using 60,000 training and
10,000 testing samples utilizing the MNIST dataset. The
authors extensively researched the effects of various
hyperparameters on the model's output. Compared to other
top-tier models, the model demonstrates even more
effectiveness by outperforming them in classification
accuracy. A thorough investigation of the effects of
hyperparameters in CNN models for handwritten digit
recognition, which contributes to the area, is provided by this
study. Impressive accuracy rates on the training and testing
datasets demonstrate how well the model holds up and how it
could be used in real-world situations.

This paper [10] uses the MNIST dataset to examine how
well three different ML algorithms, Support Vector
Machines, Multilayer Perceptron, and CNN, recognize
handwritten digits. The study's main objective is to find the
best model for digit recognition tasks by comparing their

performance in terms of execution time and accuracy.
Starting with the fact that various people have varied writing
styles, the authors admit that handwritten digit detection isn't
an easy task. They stress the significance of precision in
practical contexts, where mistakes can have far-reaching
consequences, such as automated bank check processing.
The publication describes each algorithm in detail in its
methodology section, including the dataset, number of
epochs, algorithm complexity, accuracy, and runtime. The
MNIST dataset, which includes 70,000 photographs of
handwritten digits, is utilized for this assessment. Each
algorithm's implementation is described in detail in the
paper. While support vector machines (SVMs) are known for
their speed and simplicity, they aren't great at identifying
complicated images. CNN and MLP, in contrast, can
accomplish more sophisticated structures, leading to
improved accuracy in number identification. While support
vector machines (SVMs) perform best on training data, CNN
beat all other models on the test dataset. A crucial component
of machine learning models, CNN's better capacity to
generalize from training data to unknown data is shown here.
We then go over how long it takes for each model to run,
comparing how quickly and efficiently SVM works with
CNN and how computationally heavy it is. In terms of
accuracy, CNN is the best model for handwritten digit
recognition tasks, according to this research. Execution times
will be longer because of this. Finding the optimal solution
for a given job often requires balancing two competing
priorities: accuracy and efficiency. Finding the right
algorithm, one that strikes a balance between accuracy,
execution time, and processing resources, depends on the
unique needs of each job, according to the article. CNN is
ideal for complicated prediction problems with image data.

With an emphasis on the MNIST and EMNIST datasets,
the article offers a thorough overview of developments in
handwritten character recognition. New computer vision
methods, particularly CNNs, rely heavily on the MNIST
dataset, which the study recognizes as crucial for their
validation. It traces the history of MNIST as a standard from
its inception in 1998 to its current iteration in 2019. This
study classifies methods for achieving high accuracy on the
MNIST dataset according to whether they use convolutional
neural networks, data augmentation, or preprocessing. [11]
According to the research, the MNIST dataset is becoming
less challenging as state-of-the-art methods have reached test
error rates below 1%. In response, a more difficult
benchmark known as the EMNIST dataset was introduced in
2017 with a bigger sample size and handwritten letters.
Using the EMNIST dataset, the article compares the results
of several models, including CNN, capsule layers, and deep
convolutional extreme learning machines. It emphasizes the
substantial accuracy attained with these models, particularly
when utilizing CNNs with sophisticated methods like
capsule layers. The authors note that data augmentation
approaches frequently improve models' performance on these
datasets, especially when combined with CNN classifiers.
They also point out that, with advancements in hardware, the
sector is moving towards more complicated designs and has
a greater ability to manage massive amounts of information.
The research concludes that although MNIST and EMNIST
accuracy rates are getting close to their maximum, solving
more complicated computer vision problems may require
new and improved CNNs and other techniques.

The creation of a CNN model for the MNIST dataset-
based recognition of handwritten digits is the primary
emphasis of this work. The model comprises a fully
connected layer, two pooling layers, an input layer, two
convolutional layers, and an output layer. Feature extraction
relies on the 5x5 convolutional core of the convolutional
layers, which, in turn, simplifies the computational process.
[12] The 2x2 pooling layers help reduce image resolution.
The fully linked layer is employed to decipher these
characteristics and generate predictions. The paper's focus on
training and the model's performance is crucial. Following
rigorous training, the model successfully recognized
handwritten numbers with an accuracy rate of 99.25% on the
test set and a flawless accuracy rate of 100% on the training
set. The impressive level of accuracy demonstrated by the
model highlights its promising capabilities for real-world
digit identification tasks. Additionally, the authors address
the potential drawbacks of their methodology, namely when
it comes to classifying digits that are either handwritten or
downloaded from the internet. They imply that to enhance
the model's capacity for generalization, future studies should
look at training it using handwritten custom digital data. To
make CNN models more applicable, continuously improving
and adjusting them to different datasets is necessary.

Finding digits written by hand using the MNIST database
and various machine-learning models is the main topic of
this paper. [13] The authors examine options such as Support
Vector Machine (SVM), Decision Tree, Naïve Bayes, K-
Nearest Neighbor, and Random Forest to evaluate how well
multiple algorithms perform in handwritten digit recognition.
Improving the accuracy and consistency of number
recognition is the main goal of the research. Testing how
well and quickly these algorithms work is an important part
of the study. For this purpose, the authors put their models to
the test using the MNIST dataset, which includes 28,000
images of handwritten numbers for training and 14,000
photos for testing. According to the study, the SVM classifier
performed best among the classifiers tested, with a success
rate of 95.88%. Although the time it takes to compute the
results varies, this finding demonstrates that SVM is
effective at correctly classifying handwritten digits. Factors
such as human handwriting variability and the necessity for
reliable feature extraction techniques are discussed in the
article as obstacles to handwritten digit recognition. The
authors stress the need to tailor one's choice of machine
learning algorithm to one's job, striking a balance between
accuracy, runtime, and available computing resources.

With an emphasis on using CNN and K-nearest
neighbors (KNN) algorithms, the study offers a perceptive
investigation into handwritten digit recognition. To build a
strong structure that can accurately detect different types of
handwritten numbers, the study uses the MNIST dataset to
train and evaluate these models. An important aspect of the
study is contrasting the two networks' capabilities in
identifying handwritten numbers using CNN and KNN. The
CNN model's deep learning framework stands out because it
processes and identifies the numerical images well. The
convolutional, pooling, and fully connected layers that make
up this model are all essential for extracting features and
categorizing digits. The capacity of the well-known and
straightforward KNN method to categorize numbers
according to the closeness of feature space data points is also
tested. The author [14] highlights the difficulties of

handwritten digit recognition, including the fact that
handwriting styles can vary greatly and the requirement for
models to generalize from previously encountered training
data to new, unfamiliar data. The study shows that CNNs can
handle the intricacy of handwritten digit images better than
KNN despite KNN providing a simpler technique. This is
due to CNN's deep learning capabilities. The paper goes even
further into the nuts and bolts of implementing these models,
covering topics like the complexities of training neural
networks and the significance of preprocessing datasets.
Although both CNN and k-nearest neighbors (KNNs) have
their uses, the study finds that CNNs are often better at
recognizing handwritten digits despite their higher
computational complexity.

The authors [15] offer a CNN-based method for
improved handwritten digit recognition. By training and
testing the MNIST dataset, the authors aim to improve
accuracy while decreasing computational time. This study
presents a CNN architecture enhanced with the DL4J (Deep
Learning for Java) toolkit to improve the numerical
recognition procedure. The research highlights the CNN
design with several pooling, fully connected, and
convolutional layers. This architecture is crucial for feature
extraction and classification from images of handwritten
digits. The model uses transformations like convolution and
pooling to process input data efficiently, as seen in the
implementation details. The research stands out for
thoroughly testing the suggested CNN model to confirm its
efficacy. The authors reported an impressive 99.21%
accuracy rate in detecting handwritten digits, marking a
notable advance over earlier proposed models. Optimal
design for digit recognition is discussed in the research,
which also investigates how changing the number of
convolutional layers affects accuracy and error rates. The
study highlights the need to balance precision with
computing economy. Important for real-world applications,
the authors provide an effective training and prediction
procedure using the DL4J framework. The study says the
model might be enhanced for more complicated recognition
tasks, like letter recognition.

This research uses the MNIST dataset to investigate the
feasibility of training a CNN to recognize handwritten digits.
Improving CNN’s accuracy and efficiency in digit
identification tasks is the main emphasis of the work. [16]
The study presents a novel CNN architecture for feature
extraction and digit image classification, incorporating
multiple convolutional, pooling, and fully connected layers.
With a 99.21% success rate on the MNIST test dataset, the
CNN model developed in this work is successful. This
impressive precision hints at the model's resilience and
possible use in real-world digit identification tasks. To
achieve such a high level of accuracy, the model's training
procedure is detailed in the paper, emphasizing the
significance of layer setup and parameter optimization. In
addition, the study delves into the difficulties of using the
model on handwritten numbers obtained from different
sources, like manual writing or online downloads. The
authors propose that future studies use a wider variety of
digital handwriting data in training to improve the model's
generalization ability. By shedding light on how to create a
CNN model that is both efficient and accurate, this study
contributes significantly to the area of number recognition.
An all-encompassing method for enhancing CNN-based

number recognition systems is provided by integrating
sophisticated layer designs and focusing on parameter
optimization.

Utilizing the MNIST dataset in particular, the article
offers a thorough investigation into the application of CNN
for recognizing handwritten digits. An adaptive framework
for optical character recognition (OCR) models is being
developed as part of this project to improve accuracy for
specific datasets of numerical digits in English. A fresh
bespoke dataset of handwritten digits was created by a single
contributor, guaranteeing stylistic consistency; this is one of
the study's main contributions. This dataset is used with the
conventional MNIST dataset when training a CNN model.
The article investigates how different amounts of bespoke
data, with and without rotations, impact the model's
performance. According to the research, custom data can
greatly enhance OCR accuracy for personalized or localized
handwritten text. The study also emphasizes the difficulties
linked to data imbalance and scarcity in optical character
recognition. According to the authors, one possible answer to
these problems is to generate data using traditional ways.
[17] Considering the limits of existing datasets, they contend
that this method might be the gold standard for bespoke data
augmentation.

The research uses the MNIST dataset to investigate
CNN-based handwriting digit recognition. Feature extraction
and digit image categorization are two of the many important
tasks performed by the novel CNN architecture it introduces.
[18] The model demonstrates phenomenal success with a
remarkable accuracy rate of 97.78% on the MNIST test
dataset, highlighting its usefulness and promise for real-
world applications. Examining the steps used to train the
model, the study finds that optimizing parameters and layer
configuration is crucial for good results. The article also
delves into the difficulties of deciphering handwritten
numbers from several mediums, including manual writing
and online downloads. The research recommends training the
model with a wider variety of handwritten digital data to
enhance its generalizability. The study advances digit
recognition by suggesting an effective and precise CNN
model. It provides a holistic strategy for improving digit
recognition systems that rely on CNN by providing insights
into sophisticated layer topologies and optimizing
parameters.

A. CNN

CNN is fundamental to deep learning, particularly for
processing and analyzing images. They are very good at
visual identification, image categorization, and object
detection because of their special architecture based on the
human visual cortex. Central to CNN are layers, the purpose
of which is to process input data, usually an image. Mid to
the system is the convolutional layer, which generates feature
maps by applying filters to input data. These filters
automatically focus on important elements, such as edges or
textures. The next layer is the pooling layer, which controls
overfitting by lowering the network's computation and
parameter counts and shrinking the representation's spatial
size. Near the very end of a CNN design are the fully linked
layers. This is where the abstract reasoning that relies on the
traits that have been extracted happens. A fully connected
layer integrates the learned characteristics for the final

classification or prediction job by combining neurons in that
layer to all activations in the previous layer.

When it comes to computer vision, CNN has proven
game-changers. Applications like medical image analysis,
autonomous vehicle navigation, and face recognition benefit
greatly from their capacity to learn hierarchical feature
representations. CNN has always led deep learning research,
and this trend will only accelerate as technology improves
and CNN can process increasingly complicated tasks and
data kinds. [19]

B. SGD

Machine learning and deep learning rely heavily on SGD,
an essential optimization technique while training their
models. SGD is a technique for reducing a training-set-
averaged objective function, usually a loss function. Instead
of using the whole dataset to calculate the loss function's
gradient, as is done by classic gradient descent methods,
SGD adjusts the model's parameters using a small number of
training samples. For big datasets, this method makes SGD
far more efficient. [20]

C. Adam Optimizer

Regarding deep learning, the Adam optimizer is one of
the most popular algorithms for training neural networks. Its
ability to handle massive datasets and complex models
results efficiently and powerfully from its successful usage
of adaptive learning rates. Adam integrates the best features
of the RMSProp and AdaGrad optimizers to deal with sparse
gradients on noisy issues. For every parameter, Adam keeps
track of two moving averages: one for the slopes (like
momentum) and another for the square of the gradients (like
RMSprop). Using these moving averages, we may determine
a parameter-specific adaptive learning rate. First, the mean,
which considers previous angles, aids momentum; second,
the uncentered variance, which scales the learning rate
inversely proportional to the size of the slopes, is very useful.
Adam is resilient to scaling and updating differences because
this technique dynamically adapts the learning rate for each
parameter. [21]

D. Adadelta Optimizer

A popular machine learning technique for training neural
networks, Adagrad has some limitations; the Adadelta
optimization algorithm aims to fix these issues and make
Adagrad even better. Although Adagrad performed well with
sparse data, it frequently encountered problems during
training, such as a quickly dropping learning rate, which
resulted in less-than-ideal convergence. Adadelta, which
provides a more stable method for adaptive learning rates,
arose to address these concerns. Reduced aggressive
monotonically declining learning rate is the main difference
between Adagrad and Adadelta. Adadelta limits the window
of accumulated past gradients to a specified size instead of
adding all past squared angles. This is accomplished by
utilizing exponentially moving averages, which ignore long-
gone gradients in favor of more current data. The learning
rate can be kept from dropping to very low values with the
help of this method. [22]

One area where Adadelta has greatly appreciated is its
use with recurrent neural networks (RNNs) and other deep
learning applications. For complicated and large-scale ML

jobs, it's a good option because it can dynamically change
learning rates and consider the most relevant gradient
information. Even if there are more recent optimization
algorithms, Adadelta is still a useful tool for optimization,
particularly for jobs where keeping and changing learning
rates are tough. [23]

III. METHODOLOGY

 Data preparation is the project methodology's first and

most important phase. The MNIST dataset, which is 28x28

pixels and contains 60,000 training and 10,000 test images

of grayscale handwritten digits, is the basis of this work.

These images must first undergo several preprocessing

stages for machine learning to work. To ensure the data is

consistent, we normalize the image pixel values to all fall on

a scale from 0 to 1. The images are also prepared for use

with CNN by being transformed into a tensor format. This

transformation is critical because CNN works best with data

that follows a certain format. Building the CNN model

follows data preparation. The project's deep learning method

revolves around this model. The CNN architecture of this

project is organized into numerous levels, with each layer

performing a specific task. The convolutional layers are set

up with different numbers of filters; they are responsible for

extracting features from the input images. To help reduce

computational complexity and overfitting, these layers are

alternated with max-pooling layers, which reduce

dimensionality. Important for the last categorization

judgment, the network has thick layers towards the end.

Activation functions such as ReLU (Rectified Linear Unit)

contribute to the model's ability to learn complicated

patterns by introducing non-linearity.

Training the model follows the definition of the model's

design. The next step is to feed CNN the training data that

has been prepared. The training phase changes the network's

weights to minimize the discrepancy between the actual and

predicted values. To ensure the model is learning well,

watching how it performs as it is being trained is crucial.

Common performance measures used for this purpose

include loss and accuracy. To find the optimal configuration

for the model's performance, we experimented with several

optimization techniques, such as Stochastic Gradient

Descent (SGD), Adam, and Adadelta, each with its learning

rate.

A distinct test set is used to assess the model's performance

in addition to the training set. This phase must ensure the

model works properly with fresh, unknown data. The

accuracy of the model's digit classification is tested at this

stage. Some criteria for evaluating performance include loss

and precision on the test set. It is possible to learn which

optimizer configuration produces the most accurate and

error-minimizing outcomes by comparing these metrics

across several setups. Moreover, the study investigates the

utilization of methods such as batch normalization in

conjunction with various optimizers and learning rates. The

training process can be made more stable and faster by

applying batch normalization to every layer or activation

input. The impact of introducing batch normalization is

analyzed by examining the changes in accuracy and loss on

the testing data.
Results analysis and interpretation are also critical parts of
the approach. We must test the model's performance in

various settings to do this. The accuracy and loss rates of the
model's digit prediction capabilities under different
optimizers and learning rates are evaluated. You may learn
much about the efficacy of multiple hyperparameters and
training approaches from these comparisons. Its performance
on specific test photos is further examined to assess the
model's usefulness in real-world settings. A thorough
evaluation of the results is the last step of the project. This
involves analyzing the model's performance in different
environments and determining the impact of different
hyperparameters and architectural decisions. Understanding
the role of various preprocessing stages, such as
normalization and tensor conversion, in the model's
performance is also explored in the analysis.

IV. DATA ANALYSIS

Recognizing handwritten digits using a CNN applied to
the MNIST dataset is the main emphasis of this research
effort. The model was trained and tested using the MNIST
dataset, a set of greyscale images of handwritten numbers.
Each sample in the dataset is a 28x28 pixel image; there are
60,000 training examples and 10,000 test samples in total.
Before CNN can do its job, the images undergo several
changes, such as being normalized and converted to tensor
format. The model uses training and testing data sets to sort
the images into ten categories, each representing a number
from zero to nine. Digit recognition is a fundamental
problem in computer vision, and this project uses deep
learning techniques with this classic dataset to tackle it.

Figure 1: Class Distribution

Figure 1 shows the distribution of classes within that

dataset. The dataset is reasonably balanced, with each

category representing 0 to 9. The dataset has a nearly

uniform representation of each digit class since the counts

for each type are approximately equal and hover around the

6,000 level. The CNN model must train on an equivalent

amount of data for each digit to improve the likelihood of

reaching high accuracy across all classes during the

recognition task. This uniformity facilitates this process.

Figure 2: Pixel Intensity Mean and Standard Deviation

The two graphs in Figure 2 show pixel intensity statistics in

the images from the MNIST dataset. The periodic pattern

seen in the left chart, which shows the mean of pixel

intensities, is related to the structure of the handwritten

numbers, as darker parts (such as edges) are consistently

associated with certain image sections. The right chart

shows high variability at the same periodic sites, illustrating

the pixel intensity standard deviation. The method to

generate the Figure 2 graphs can be seen in the coding file.

Figure 3: Training and Testing Data Class Distribution

Figure 3 shows that each of the ten classes in the training

data has many samples (5,000 to 6,000 per class), but there

is a little inequity in the distribution of these samples (see

left side of the figure). There is a more consistent

distribution in the test data class distribution (shown on the

right), with about 800 to 1,000 samples for each digit class.

Figure 4: Loading the Sample Images After Preprocessing

Figure 4 shows that the images were converted to a four-

dimensional array, and the pixel values were uniformly

scaled to a range of [0, 1].

Figure 5: Predicting the Digit with SGD Optimizer and 0.01

Learning Rate

Figure 5 shows that we are testing the image. Based on the

image, we know that the right answer is 7, and our trained

model also predicts this, so this is fine. Also, the accuracy of

our model is 97.96%, and the testing loss is only 6.29%,

which is a good result.

Figure 6: Predicting the Digit with Adam Optimizer and 0.001

Learning Rate

Figure 6 shows another version of 7, and it has been tested

with different hyperparameters. It can be illustrated from the

above figure that the testing accuracy is 98.27%, and the

loss is only 5.51%, which is surely a better result than the

previous result.

Figure 7: Predicting the Digit with Adadelta Optimizer and 1.0

Learning Rate

Just like above Figure 6, Figure 7 also shows that the

hyperparameters have been changed, and just like above, the

accuracy has improved, and the testing loss has decreased.

The testing accuracy achieved is 98.65%, and testing loss

has also been reduced to 3.97%.

Figure 8: Complex CNN

A sophisticated CNN model is built and trained using the

Keras Sequential model in Figure 8. This CNN model

consists of two dense layers, a flattening step, and two

convolutional and max pooling layers. The filters increase

from 32 in the first convolutional layer to 64 in each

succeeding layer. The model utilizes the 'he_uniform' kernel

initializer and the 'ReLU' activation function. Using a

learning rate of 0.01, SGD is the utilized optimizer. The

model gets good results after being trained on the training

dataset (X_train, Y_train). The model's efficacy in image

classification is demonstrated by its testing loss and

accuracy on the test dataset (X_test, Y_test). Furthermore,

the model's ability to accurately estimate the digit in a

particular test image (index 150) demonstrates its usefulness

in image identification tasks. The model's intricacy and

capacity to handle comprehensive image data are

highlighted by its 159,254 trainable parameters, as revealed

in the model overview. Also, for this complex CNN, the

achieved testing accuracy is 98.73%, and the testing loss is

4.29%.

Figure 9: Predicting the Digit with SGD Optimizer, 0.01 Learning

Rate, and Batch Normalization

Finally, in Figure 9, with batch normalization, the learning

rate of 0.01, and SGD optimizer, the testing data accuracy

was 99.24%, and the testing loss was only 2.63%.

V. CONCLUSION

Results from this experiment show that Convolutional
Neural Networks (CNNs) performed well on the MNIST
dataset when it came to identifying handwritten numbers.
The importance of careful preprocessing and optimizing the
model architecture in attaining high accuracy in digit
classification is demonstrated throughout the project
lifecycle, from data preparation to model creation, training,
and performance evaluation. The dataset was normalized,
and the tensor was transformed to extract and understand the

complex patterns in handwritten numbers. Then, a CNN
model was meticulously built using many convolutional,
max pooling, and dense layers. Experiments using alternative
learning rates of optimizers, such as SGD, Adam, and
Adadelta, shed light on the learning dynamics of the model.
Better accuracy and less loss are signs that the model's
performance was already high before batch normalization
was used. In the future, the use of deeper networks or CNNs
with multiple layers can detect more complex patterns in the
data that might be further investigated.

REFERENCES

[1] S. Boopathi and U. K. Kanike, "Applications of Artificial Intelligent
and Machine Learning Techniques in Image Processing," IGI Global

Publishing Tomorrow's Research Today, 2023.

[2] S. İ. Omurca, E. Ekinci, S. Sevim, E. B. Edinç, S. Eken and A. Sayar,
"A document image classification system fusing deep and machine

learning models," Applied Intelligence, vol. 53, pp. 15295-15310,

2023.

[3] R. Thanki, "A deep neural network and machine learning approach for

retinal fundus image classification," Healthcare Analytics, vol. 3,

2023.

[4] C. J. Haug and J. M. Drazen, "Artificial Intelligence and Machine

Learning in Clinical Medicine," The New England Journal of
Medicine, 2023.

[5] M. Rana and M. Bhushan, "Machine learning and deep learning

approach for medical image analysis: diagnosis to detection,"
Multimedia Tools and Applications, vol. 82, p. 26731–26769, 2023.

[6] I. Cinar, Y. S. Taspinar, R. Butuner, R. Kursun, M. H. Calp and M.

Koklu, "Classification of deep image features of lentil varieties with
machine learning techniques," European Food Research and

Technology, vol. 249, pp. 1303-1316, 2023.

[7] M. S. Rana , M. . H. Kabir and A. Sabour, "Comparison of the Error
Rates of MNIST Datasets," North American Academic Research, vol.

6, no. 5, 2023.

[8] S. Gouraguine, . M. Qbadou, M. RAFIK and K. Mansouri, "A New

Knowledge Primitive of Digits Recognition for NAO Robot Using

MNIST Dataset and CNN Algorithm for Children’s Visual Learning

Enhancement," Journal of Information Technology Education, vol. 22,
pp. 389-408, 2023.

[9] H. Shao, E. Ma, M. Zhu and X. Deng, "MNIST Handwritten Digit

Classification Based on Convolutional Neural Network with
Hyperparameter Optimization," Intelligent Automation & Soft

Computing, vol. 36, no. 3, 2023.

[10] S. Pashine, R. Dixit and R. Kushwah, "Handwritten Digit Recognition
using Machine and Deep Learning Algorithms," Computer Vision and

Pattern Recognition, 2021.

[11] A. Baldominos, Y. Saez and P. Issai, "A Survey of Handwritten
Character Recognition with MNIST and EMNIST," Applied Sciences,

vol. 9, 2019.

[12] Y. Gong and P. Zhang, "Research on Mnist Handwritten Numbers
Recognition based on CNN," Journal of Physics: Conference Series,

vol. 2138, 2021.

[13] B. Gope, S. D. Pande, N. Karale and S. Dharmale, "Handwritten

Digits Identification Using Mnist Database Via Machine Learning

Models Handwritten Digits Identification Using Mnist Database Via

Machine Learning Models," IOP Conference Series Materials Science
and Engineering, vol. 1022, no. 1, 2021.

[14] Y. Peng, "Digital Recognition Methods Based on Deep Learning,"

Scientific Programming, 2022.

[15] S. Ali, Z. Shaukat, M. Azeem, Z. Sakhawa, T. Mahmood and K. u.

Rehman, "An efcient and improved scheme for handwritten digit

recognition based on convolutional neural network," Springer Nature
Switzerland AG, 2019.

[16] R. Zhu, S. Lilak, A. Loeffler, J. Lizier, A. Stieg, J. Gimzewski and Z.

Kuncic, "Online dynamical learning and sequence memory with
neuromorphic nanowire networks," Nature Communications, 2023.

[17] P. H. Jain , V. Kumar, J. Samuel, S. Singh, A. Mannepalli and R.

Anderson, "Artificially Intelligent Readers: An Adaptive Framework
for Original Handwritten Numerical Digits Recognition with OCR

Methods," Information, vol. 14, 2023.

[18] D. Jayswal, B. Y. Panchal, B. Patel and N. Acharya, "Study and

Develop a Convolutional Neural Network for MNIST Handwritten

Digit Classification," Artificial Neural Networks, pp. 407-416, 2022.

[19] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a
convolutional neural network," 2017 International Conference on

Engineering and Technology (ICET), pp. 1-6, 2017.

[20] E. YAZAN and M. F. Talu, "Comparison of the stochastic gradient
descent based optimization techniques," International Artificial

Intelligence and Data Processing Symposium (IDAP), pp. 1-5, 2017.

[21] Z. Zhang, "Improved Adam Optimizer for Deep Neural Networks,"
IEEE/ACM 26th International Symposium on Quality of Service

(IWQoS), pp. 1-2, 2018.

[22] M. S. Devi, R. Aruna, D. R. Rajeswari and R. S. Manogna, "Conv2D
Xception Adadelta Gradient Descent Learning Rate Deep learning

Optimizer for Plant Species Classification," Third International

Conference on Advances in Electrical, Computing, Communication
and Sustainable Technologies (ICAECT), pp. 1-4, 2023.

[23] R. Lin, "Analysis on the Selection of the Appropriate Batch Size in

CNN Neural Network," International Conference on Machine
Learning and Knowledge Engineering (MLKE), pp. 106-109, 2022.

